ODELAY: A Large-scale Method for Multi-parameter Quantification of Yeast Growth
نویسندگان
چکیده
منابع مشابه
ODELAY: A Large-scale Method for Multi-parameter Quantification of Yeast Growth
Growth phenotypes of microorganisms are a strong indicator of their underlying genetic fitness and can be segregated into 3 growth regimes: lag-phase, log-phase, and stationary-phase. Each growth phase can reveal different aspects of fitness that are related to various environmental and genetic conditions. High-resolution and quantitative measurements of all 3 phases of growth are generally dif...
متن کاملA Parameter-Free Classification Method for Large Scale Learning
With the rapid growth of computer storage capacities, available data and demand for scoring models both follow an increasing trend, sharper than that of the processing power. However, the main limitation to a wide spread of data mining solutions is the non-increasing availability of skilled data analysts, which play a key role in data preparation and model selection. In this paper, we present a...
متن کاملsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
A TWO-STAGE METHOD FOR DAMAGE DETECTION OF LARGE-SCALE STRUCTURES
A novel two-stage algorithm for detection of damages in large-scale structures under static loads is presented. The technique utilizes the vector of response change (VRC) and sensitivities of responses with respect to the elemental damage parameters (RSEs). It is shown that VRC approximately lies in the subspace spanned by RSEs corresponding to the damaged elements. The property is leveraged in...
متن کاملAn Efficient Parameter-Free Method for Large Scale Offline Learning
With the rapid growth of computer storage capacities, available data and demand for scoring models both follow an increasing trend, sharper than that of the processing power. However, the main limitation to a wide spread of data mining solutions is the non-increasing availability of skilled data analysts, which play a key role in data preparation and model selection. In this paper we present a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Visualized Experiments
سال: 2017
ISSN: 1940-087X
DOI: 10.3791/55879